
 

Dr. E.O. Ohwadua                     Theory of Partial Differential Equations 1 

MTH 402 THEORY OF PARTIAL DIFFERENTIAL EQUATIONS 3 Units  

Theory and solutions of first-order and second order linear equations.  Classification, characteristics, 

canonical forms, Cauchy problems.    Elliptic equations; Laplace’s and Poisson’s formulas, properties of 

harmonic functions.    Hyperbolic equations; wave equations, retarded potential; transmission line 

equation, Riemann method.  Parabolic equation.    Diffusion equation, singularity function, boundary and 

initial-value problem. 

 

 

1.0 Introduction 
When partial derivatives are required in the mathematical formulation of some physical phenomenon, the 

resulting equation is called partial differential equation. A partial differential equation (PDE) is one 

involving the partial derivatives of one or more dependent variables with respect to two or more 

independent variables. The variables involved may be time and/or one or more spatial coordinates. It is 

convenient to indicate partial derivatives by writing independent variables as subscripts. Thus, we can 

write: 

𝑢𝑥  for  
𝜕𝑢

𝜕𝑥
,       𝑢𝑥𝑥   for   

𝜕2𝑢

𝜕𝑥2
,      𝑢𝑥𝑦   for   

𝜕2𝑢

𝜕𝑥𝜕𝑦
 

and so on. It is generally assumed that dependent variable, 𝑢 satisfies conditions so that: 

𝑢𝑥𝑦 = 𝑢𝑦𝑥 

 

Examples: 

Two Dimensions: If 𝑢 = 𝑢(𝑥, 𝑦) is a function of two variables, the following expressions are examples 

of PDE; 
𝜕𝑢

𝜕𝑥
= 𝑢 + 𝑥 + 𝑦   or   𝑢𝑥 = 𝑢 + 𝑥 + 𝑦 

𝜕𝑢

𝜕𝑥
= 0 or  𝑢𝑥 = 0,   

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
= 0  or 𝑢𝑥 + 𝑢𝑦 = 0,    (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

= 1  or  (𝑢𝑥)2 + (𝑢𝑦)
2

= 1 

and 

𝜕2𝑢

𝜕𝑥𝜕𝑦
= 0  or  𝑢𝑥𝑦 = 0,   

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0  or  𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0,    

𝜕2𝑢

𝜕𝑥2
−

𝜕2𝑢

𝜕𝑦2
= 0  or 𝑢𝑥𝑥 − 𝑢𝑦𝑦 = 

Three Dimensions: If 𝑢 = 𝑢(𝑥, 𝑦, 𝑧) is a function of three variables, the following expressions are PDE: 
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
+

𝜕𝑢

𝜕𝑧
= 0  or  𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧 = 0,

(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

+ (
𝜕𝑢

𝜕𝑧
)

2

= 1  or  (𝑢𝑥)2 + (𝑢𝑦)
2

+ (𝑢𝑧)2 = 1 

and 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
= 0  or  𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0,    

𝜕2𝑢

𝜕𝑥2
−

𝜕2𝑢

𝜕𝑦2
−

𝜕2𝑢

𝜕𝑧2
= 0  or 𝑢𝑥𝑥 − 𝑢𝑦𝑦 − 𝑢𝑧𝑧 = 1  

and 

𝑢𝑥𝑥𝑥 + 3𝑦𝑢𝑥𝑥 − 𝑥𝑢𝑥𝑢𝑦𝑦 + 𝑢(𝑢𝑦)
3

= 𝑒𝑥𝑦𝑧 

 

In these examples, (𝑥, 𝑦) represents a point in the plane, and (𝑥, 𝑦, 𝑧) represents a point in space. 

Sometimes solutions 𝑢 of PDE depend also on the variable 𝑡 that denotes time. 

 

1.1 Classification of PDEs 
PDEs are classified as to order, linearity, and homogeneity in much the same way as ODE’s: 
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Order of PDE: The order of a PDE is the order of the highest derivative in the equation. For example 

𝑢𝑥 = 3𝑥2 + 7𝑦5 
Is a first-order PDE, while 

 

𝑎(𝑢𝑥𝑥)3 + 𝑏(𝑢𝑦)5 = 𝑐 

is of second-order PDE. 

 

Degree of a PDE: The degree of a PDE is the degree of the highest derivatives in the equation. The 

equation above, 

𝑎(𝑢𝑥𝑥)3 + 𝑏(𝑢𝑦)5 = 𝑐 

is of degree 3. 

Linear PDE: A linear PDE is one in which the dependent variable and all its partial derivatives are of 

first degree and each coefficient depends only on the independent variables. For example 

𝑎(𝑥, 𝑦)𝑢𝑥 + 𝑏(𝑥, 𝑦)𝑢𝑦 = 𝑐(𝑥, 𝑦)𝑢 

is a first order PDE in two independent variables 𝑥 and 𝑦. The equation is homogeneous if 𝑐(𝑥, 𝑦) = 0.  

 

Quasi-Linear PDE: A quasi-linear PDE is one in which the partial derivatives of the dependent variable 

are of first degree, although the dependent variable itself may not be. The most general quasi-linear first-

order equation in two independent variables can be put in the form: 

𝑎𝑢𝑥𝑥 + 𝑏𝑢𝑥𝑦 + 𝑐𝑢𝑦𝑦 + 𝑐(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦) = 0 

where 𝑎, 𝑏, 𝑐 are functions of 𝑥 and 𝑦, and 𝑐 is a function of the indicated quantities. 

 

Non-Linear PDE: A non-linear PDE is one in which at least one derivative is of degree greater than one, 

or there is a product of derivatives. For example, 

𝑎(𝑥, 𝑦)(𝑢𝑥)2 + 𝑏(𝑥, 𝑦)𝑢𝑦 = 0 

is a non-linear equation. 

 

1.2 Solutions of PDE’s 

Any function which when substituted in a PDE reduces it to an identity is said to be a solution of the 

equation. Given an ODE, the kind of functions that are admissible as solutions are fixed; whereas in a 

PDE, the functions are left arbitrary. For example, the ODE of a second order: 

𝑢′′(𝑥) + 𝑘2𝑢(𝑥) = 0 

has a general solution of the form: 

𝑢(𝑥) = 𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥 

where 𝐴 and 𝐵 are arbitrary constants. The functions cos 𝑘𝑥 and sin 𝑘𝑥 are fixed. To obtain a definite 

solution, we must specify two numbers 𝐴 and 𝐵. 

 But by the general solution of PDE, we mean a function 𝑢 that has all partial derivatives occurring in 

the PDE that, when substituted into the equation, reduces it to an identity for all independent variables. 

For example, let us consider the simple first-order PDE given above: 

𝑢𝑥 = 3𝑥2 + 7𝑦5                                               (1) 

where 𝑥 and 𝑦 are independent variables and 𝑢 is the unknown. Holding 𝑦 fixed and integrating (1) with 

respect to 𝑥, we find: 
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𝑢(𝑥, 𝑦) = 𝑥3 + 7𝑥𝑦5 + 𝐹(𝑦)                                    (2) 

where 𝐹 is any differentiable function of 𝑦. Thus, it follows that:  

𝑢(𝑥, 𝑦) = 𝑥3 + 7𝑥𝑦5 + 𝑒𝑦, 

𝑢(𝑥, 𝑦) = 𝑥3 + 7𝑥𝑦5 − sin 𝑦, 

𝑢(𝑥, 𝑦) = 𝑥3 + 7𝑥𝑦5 + 2𝑦
3
2, 

and so on, are all solution functions of (1). Similarly, it is easy to verify that: 

𝑢(𝑥, 𝑦) = 𝑥 + 2𝑦, 

𝑢(𝑥, 𝑦) = cos(𝑥 + 2𝑦), 

𝑢(𝑥, 𝑦) = 3𝑒𝑥𝑒2𝑦 = 3𝑒𝑥+2𝑦, 

each satisfy the equation: 

2𝑢𝑥 − 𝑢𝑦 = 0                             (3) 

Thus, a general solution of a PDE is a collection of all the solutions of the equation. For instance, (2) is a 

general solution of (1) and 

𝑢(𝑥, 𝑦) = 𝐺(𝑥 + 2𝑦)                                (4) 

is a general solution of (3), where 𝐺 is any differentiable function of 𝑥 + 2𝑦. Here, we find one of the 

most fundamental differences between the general solution of an ODE and that of a PDE – the general 

solution of an ODE contains arbitrary constants, whereas that of a PDE involves arbitrary functions. 

 In practice, one is seeking a particular solution of the PDE that satisfies certain auxiliary conditions 

arising out of a given physical situation. Most of the time, it is impossible, or at least difficult to find the 

needed particular solution by specialising the general solution of the PDE as is done for ODEs. This is so 

because it is very difficult to specialise arbitrary functions except in special situations. Therefore, it is 

usually best in solving PDEs to find a suitable set of particular solutions, each of which satisfies some of 

the prescribed auxiliary conditions, and then combine these particular solutions in some fashion so that 

the resulting solution function satisfies all the prescribed conditions. 

 

1.3  Properly-posed Problems 

The problems consisting of solving a PDE subject to certain conditions in the form of boundary and/or 

initial conditions are called initial-boundary value problems, or more simply, boundary value problems. In 

the study of these problems, three basic questions arise of chief importance: 
 

a) Does a solution exist? 

b) Is the solution unique? 

c) Is the solution stable? 
 

 Questions concerning existence and uniqueness are standard in any study of DEs. The third question 

above deals with the problem of whether the solution depends continuously upon the prescribed data 

(both boundary and initial conditions). That is, do small changes in the prescribed data produce only small 

changes in the values of the solution function at each point? This question is of great concern in 

applications wherein the auxiliary data are determined most often by measurements and hence are only 

approximate, not exact as we assume in theoretical discussions. We wound certainly hope that small 

errors in these measurements would produce only small errors in the solution function. A boundary value 
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problem possessing a unique, stable solution is called properly-posed or well-posed. However, it is 

noteworthy that problem with too many prescribed boundary and/or initial conditions is an over-specified 

problem and may not have a solution, and a problem that has too few prescribed conditions does not have 

a unique solution. 

 

1.3.1 Types of Auxiliary Conditions 

Much work has been carried out over the years to determine the types of auxiliary conditions that must be 

prescribed so that a given boundary value problem is properly-posed, but such an analysis here is beyond 

the scope of this course. We shall however discuss the boundary and initial conditions that frequently 

arise in the description of physical phenomena which fall mainly into four categories: 
 

a) Dirichlet Conditions: In a Dirichlet boundary condition, the value of the solution at the boundary 

points is specified. This can be written as; 

𝑢(𝑎)  = 𝛼    and     𝑢(𝑏)  =  𝛽 

where 𝑢(𝑥) is the solution to the differential equation, and 𝑎 and 𝑏 are the boundary points. The unknown 

function 𝑢 is specified at each point on the boundary of the region of interest. For example, consider the 

boundary value problem for the one-dimensional heat equation: 

𝑢𝑡 = 𝑘𝑢𝑥𝑥,      0 < 𝑥 < 𝐿, 𝑡 > 0 

𝑢(0, 𝑡) = 0,   𝑢(𝐿, 𝑡) = 0, 𝑡 > 0 

𝑢(𝑥, 0) = 𝑓(𝑥),   0 < 𝑥 < 𝐿 

where 𝑘 is a constant, 𝑢(𝑥, 𝑡) is the temperature at position 𝑥 and time 𝑡, and 𝑓(𝑥) is the initial 

temperature distribution. The Dirichlet boundary conditions specify that the temperature at the two ends 

of the rod (𝑥 = 0 and 𝑥 = 𝐿) are fixed at zero. This models the situation where the rod is insulated at 

both ends and no heat can flow in or out. 

b) Neumann Conditions: In a Neumann boundary condition, the derivative of the solution at the 

boundary points is specified. This can be written as; 

 𝑢′(𝑎) = 𝛼       and      𝑢′(𝑏)  =  𝛽  

Values of the normal derivative of the unknown function 𝑢 are prescribed at each point on the boundary 

of the region of interest. Consider the boundary value problem for the one-dimensional wave equation: 

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥,     0 < 𝑥 < 𝐿, 𝑡 > 0 

𝑢𝑥(0, 𝑡) = 0,   𝑢𝑥(𝐿, 𝑡) = 0, 𝑡 > 0 

𝑢(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝐿 

𝑢𝑡(𝑥, 0) = 𝑔(𝑥), 0 < 𝑥 < 𝐿 

where 𝑐 is a constant, 𝑢(𝑥, 𝑡) is the displacement of a string at position 𝑥 and time 𝑡, 𝑓(𝑥) is the initial 

displacement, and 𝑔(𝑥) is the initial velocity. The Neumann boundary conditions specify that the 

endpoints of the string are fixed (𝑢𝑥(0, 𝑡)  =  𝑢𝑥(𝐿, 𝑡)  =  0), which models the situation where the string 

is attached to two fixed points. 

c) Robin Conditions: In a Robin boundary condition, a linear combination of the value of the solution 

and its derivative at the boundary points is specified. This can be written as;  

𝑎𝑢(𝑎) +  𝑏𝑢′(𝑎) =  𝛼     and     𝑐𝑢(𝑏)  +  𝑑𝑢′(𝑏)  = 𝛽 
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where 𝑎, 𝑏, 𝑐, and 𝑑 are constants. Values of the sum of the unknown function 𝑢 and its normal derivative 

are prescribed at each point on the boundary of the region of interest. For example, consider the boundary 

value problem for the two-dimensional Laplace equation: 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0,   0 < 𝑥 < 𝐿, 0 < 𝑦 < 𝐻 

𝑢(0, 𝑦) = 0,   𝑢(𝐿, 𝑦) = 0,   0 < 𝑦 < 𝐻 

𝑢𝑥(𝑥, 0) + 𝑢(𝑥, 0) = 𝑓(𝑥),   0 < 𝑥 < 𝐿 

𝑢𝑥(𝑥, 𝐻) − 𝑢(𝑥, 𝐻) = 𝑔(𝑥),   0 < 𝑥 < 𝐿 

where 𝑢(𝑥, 𝑦) is the potential at position (𝑥, 𝑦), 𝑓(𝑥) and 𝑔(𝑥) are given functions, and the boundary 

conditions represent a physical problem in electrostatics. The Robin boundary conditions specify that the 

potential at the bottom boundary (𝑦 = 0) is a function of its gradient (𝑢𝑥(𝑥, 0)  +  𝑢(𝑥, 0)  =  𝑓(𝑥)), and 

that the potential at the top boundary (𝑦 = 𝐻) is a function of the difference in gradient across the 

boundary (𝑢𝑥(𝑥, 𝐻)  −  𝑢(𝑥, 𝐻)  =  𝑔(𝑥)). 

d) Cauchy Conditions: Cauchy conditions are a type of boundary conditions for partial differential 

equations (PDEs) that specify both the value and the derivative of the solution on a portion of the 

boundary. In contrast to the Dirichlet, Neumann, and Robin boundary conditions, which typically apply to 

the entire boundary, Cauchy conditions apply only to a portion of the boundary. More specifically, 

suppose we have a PDE with independent variables 𝑥 and 𝑡, and dependent variable 𝑢(𝑥, 𝑡). Then, 

Cauchy conditions are given in terms of the value and derivative of the solution at a fixed value of 𝑡, say 

𝑡 = 𝑡0, on a portion of the boundary, say 𝑥 =  𝑎: 

𝑢(𝑎, 𝑡0) = 𝑓(𝑎)    and    𝑢𝑥(𝑎, 𝑡0) = 𝑔(𝑎) 

where 𝑓(𝑎) and 𝑔(𝑎) are given functions of 𝑥. 

 In other words, Cauchy conditions specify the initial values of the solution and its first derivative 

at a fixed time 𝑡0 on a portion of the boundary. These conditions are useful in situations where the 

solution is known or can be easily determined at a specific time and location, and we want to propagate 

the solution forward or backward in time. 

 An example of a PDE with Cauchy conditions is the one-dimensional heat equation: 

𝑢𝑡 = 𝑘𝑢𝑥𝑥,   0 < 𝑥 < 𝐿, 𝑡 > 0 

𝑢(𝑥, 0) = 𝑓(𝑥),   0 < 𝑥 < 𝐿 

𝑢(𝑎, 𝑡) = 𝑔(𝑡), 𝑢𝑥(0, 𝑡) = 0, 𝑢𝑥(𝐿, 𝑡) = 0, 𝑡 > 0 

where 𝑘 is a constant, 𝑢(𝑥, 𝑡) is the temperature at position 𝑥 and time 𝑡, 𝑓(𝑥) is the initial temperature 

distribution, and 𝑔(𝑡) is the temperature at the boundary point 𝑥 = 𝑎 at time 𝑡. The Cauchy conditions 

specify the value and derivative of the solution at 𝑥 = 𝑎 and time 𝑡0, which allows us to find the 

temperature distribution for all times 𝑡 >  0. 
 

 

2.0  Second-Order Partial Differential Equations 

The most important PDEs of higher order that are encountered in mathematical physics and most 

engineering problems are of second order which we shall discuss below. 

 

2.1  Classification 

The general form of the second-order linear PDE in two independent variables 𝑥 and 𝑦 is given by: 
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𝐴(𝑥, 𝑦)𝑢𝑥𝑥 + 2𝐵(𝑥, 𝑦)𝑢𝑥𝑦 + 𝐶(𝑥, 𝑦)𝑢𝑦𝑦 + 𝐷(𝑥, 𝑦)𝑢𝑥 + 𝐸(𝑥, 𝑦)𝑢𝑦 + 𝐹(𝑥, 𝑦)𝑢 = 𝐺(𝑥, 𝑦)                  (2.1) 

where 𝐴, 𝐵, 𝐶, 𝐸, 𝐹, 𝐺, are functions of the independent variables 𝑥, 𝑦. The equation is linear because 𝑢 

and its partial derivatives appear only to the first degree and the coefficients depend only on the 

independent variables 𝑥 and 𝑦. 

 Second-order PDEs are classified in terms of the coefficients of the second-order terms. These PDEs 

are classified according to the discriminant: 

𝐵2 − 𝐴𝐶 

as follows: 

𝐵2 − 𝐴𝐶 {

> 0 ⇒ PDE is hyperbolic
= 0 ⇒ PDE is parabolic
< 0 ⇒ PDE is elliptic     

 

Example 2.1 

1. The 1-D wave equation: 

𝑢𝑥𝑥 =
1

𝑐2
𝑢𝑡𝑡 

is an example of a hyperbolic PDE, where 𝐴 = 1, 𝐵 = 0, 𝐶 = −
1

𝑐2 

2. The 1-D diffusion or heat conduction equation: 

𝑢𝑥𝑥 =
1

ℎ2
𝑢𝑡 

is an example of a parabolic PDE, where 𝐴 = 1, 𝐵 = 𝐶 = 0. 

3. The 2-D Laplace’s equation: 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

is an example of elliptic PDE, where 𝐴 = 𝐶 = 1, 𝐵 = 0. 
 

 In general, we know that the coefficients 𝐴, 𝐵, 𝐶 are not constants. This implies that there may exist a 

curve in the 𝑥𝑦-plane along which the PDE may change from one form to another. A practical example 

occurs in fluid dynamics, where the transition from subsonic to supersonic flows corresponds to a change 

from elliptic to hyperbolic equation. 

 

Example 2.2: In what regions of the 𝑥𝑦-plane is the equation: 

𝑢𝑥𝑥 + 𝑥𝑢𝑦𝑦 + 𝑢𝑦 = 0 

hyperbolic, parabolic or elliptic? 

 

Solution: 

Here, 𝐴 = 1, 𝐵 = 0, 𝐶 = 𝑥. Thus, the discriminant is: 

𝐵2 − 𝐴𝐶 = −𝑥 {

> 0 if 𝑥 < 0 (hyperbolic)
= 0 if 𝑥 = 0 (parabolic)

< 0 if 𝑥 > 0 (elliptic)     
 

Thus, the PDE is hyperbolic when 𝑥 < 0, parabolic when 𝑥 = 0, and elliptic when 𝑥 > 0. 
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2.2  Transformation 

If the PDE is complicated, it may be necessary to reduce the equation to its simplest form before 

attempting to obtain a solution. This can be done by a transformation of the independent variables. We 

therefore introduce new independent variables 𝑟 and 𝑠 such that: 

𝑟 = 𝑟(𝑥, 𝑦)       and       𝑠 = 𝑠(𝑥, 𝑦) 

called canonical or standard coordinates; where 𝑟 and 𝑠 possesses continuous second partial derivatives. 

Then, 

𝑢𝑥 = 𝑢𝑟𝑟𝑥 + 𝑢𝑠𝑠𝑥 

𝑢𝑦 = 𝑢𝑟𝑟𝑦 + 𝑢𝑠𝑠𝑦 

but  

𝑢𝑥𝑦 = (𝑢𝑟𝑟𝑥 + 𝑢𝑠𝑠𝑥)𝑦 = 𝑢𝑟. 𝑟𝑥𝑦 + 𝑟𝑥 . 𝑢𝑟𝑦 + 𝑢𝑠. 𝑠𝑥𝑦 + 𝑠𝑥 . 𝑢𝑠𝑦                        (2.2) 

Now, expanding 𝑢𝑟𝑦 and 𝑢𝑠𝑦, we have: 

𝑢𝑟𝑦 = 𝑢𝑟(𝑢𝑦) = 𝑢𝑟(𝑢𝑟𝑟𝑦 + 𝑢𝑠𝑠𝑦) = 𝑢𝑟𝑟𝑟𝑦 + 𝑢𝑟𝑠𝑠𝑦       and     𝑢𝑠𝑦 = 𝑢𝑠(𝑢𝑟𝑟𝑦 + 𝑢𝑠𝑠𝑦) = 𝑢𝑟𝑠𝑟𝑦 + 𝑢𝑠𝑠𝑠𝑦 

Substituting for 𝑢𝑟𝑦 and 𝑢𝑠𝑦 in (2.2), we obtain: 

𝑢𝑥𝑦 = 𝑢𝑟𝑟𝑥𝑦 + 𝑟𝑥(𝑢𝑟𝑟𝑟𝑦 + 𝑢𝑟𝑠𝑠𝑦) + 𝑢𝑠𝑠𝑥𝑦 + 𝑠𝑥(𝑢𝑟𝑠𝑟𝑦 + 𝑢𝑠𝑠𝑠𝑦) 

       = 𝑢𝑟𝑟𝑟𝑥𝑟𝑦 + 𝑢𝑟𝑠𝑟𝑥𝑠𝑦 + 𝑢𝑟𝑠𝑟𝑦𝑠𝑥 + 𝑢𝑠𝑠𝑠𝑥𝑠𝑦 + 𝑢𝑟𝑟𝑥𝑦 + 𝑢𝑠𝑠𝑥𝑦 

       = 𝑢𝑟𝑟𝑟𝑥𝑟𝑦 + 𝑢𝑟𝑠(𝑟𝑥𝑠𝑦 + 𝑟𝑦𝑠𝑥) + 𝑢𝑠𝑠𝑠𝑥𝑠𝑦 + 𝑢𝑟𝑟𝑥𝑦 + 𝑢𝑠𝑠𝑥𝑦                                 (2.3)   

To obtain 𝑢𝑥𝑥  𝑎𝑛𝑑  𝑢𝑦𝑦, we substitute for 𝑥 and 𝑦 in (2.3): 

𝑢𝑥𝑥 = 𝑢𝑟𝑟𝑟𝑥𝑟𝑥 + 𝑢𝑟𝑠(𝑟𝑥𝑠𝑥 + 𝑟𝑥𝑠𝑥) + 𝑢𝑠𝑠𝑠𝑥𝑠𝑥 + 𝑢𝑟𝑟𝑥𝑥 + 𝑢𝑠𝑠𝑥𝑥 

       = 𝑢𝑟𝑟𝑟𝑥
2 + 2𝑢𝑟𝑠𝑟𝑥𝑠𝑥 + 𝑢𝑠𝑠𝑠𝑥

2 + 𝑢𝑟𝑟𝑥𝑥 + 𝑢𝑠𝑠𝑥𝑥                                 (2.4) 

and 

𝑢𝑦𝑦 = 𝑢𝑟𝑟𝑟𝑦
2 + 2𝑢𝑟𝑠𝑟𝑦𝑠𝑦 + 𝑢𝑠𝑠𝑠𝑦

2 + 𝑢𝑟𝑟𝑦𝑦 + 𝑢𝑠𝑠𝑦𝑦                                 (2.5) 

Employing these in (2.1), denoted by: 

𝐴(𝑥, 𝑦)𝑢𝑥𝑥 + 2𝐵(𝑥, 𝑦)𝑢𝑥𝑦 + 𝐶(𝑥, 𝑦)𝑢𝑦𝑦 + 𝐷(𝑥, 𝑦)𝑢𝑥 + 𝐸(𝑥, 𝑦)𝑢𝑦 + 𝐹(𝑥, 𝑦)𝑢 = 𝐺(𝑥, 𝑦) 

yields: 

𝐴[𝑢𝑟𝑟𝑟𝑥
2 + 2𝑢𝑟𝑠𝑟𝑥𝑠𝑥 + 𝑢𝑠𝑠𝑠𝑥

2 + 𝑢𝑟𝑟𝑥𝑥 + 𝑢𝑠𝑠𝑥𝑥]

+ 2𝐵[𝑢𝑟𝑟𝑟𝑥𝑟𝑦 + 𝑢𝑟𝑠(𝑟𝑥𝑠𝑦 + 𝑟𝑦𝑠𝑥) + 𝑢𝑠𝑠𝑠𝑥𝑠𝑦 + 𝑢𝑟𝑟𝑥𝑦 + 𝑢𝑠𝑠𝑥𝑦]

+ 𝐶[𝑢𝑟𝑟𝑟𝑦
2 + 2𝑢𝑟𝑠𝑟𝑦𝑠𝑦 + 𝑢𝑠𝑠𝑠𝑦

2 + 𝑢𝑟𝑟𝑦𝑦 + 𝑢𝑠𝑠𝑦𝑦] + 𝐷[𝑢𝑟𝑟𝑥 + 𝑢𝑠𝑠𝑥] + 𝐸[𝑢𝑟𝑟𝑦 + 𝑢𝑠𝑠𝑦]

+ 𝐹𝑢 = 𝐺                                    (2.6) 

Collecting the coefficients, we have: 

𝐴′𝑢𝑟𝑟 + 2𝐵′𝑢𝑟𝑠 + 𝐶′𝑢𝑠𝑠 + 𝐷′𝑢𝑟 + 𝐸′𝑢𝑠 + 𝐹′ = 𝐺′                      (2.6) 

where; 

𝐴′ = 𝐴𝑟𝑥
2 + 2𝐵𝑟𝑥𝑟𝑦 + 𝐶𝑟𝑦

2 

𝐵′ = 𝐴𝑟𝑥𝑠𝑥 + 2𝐵(𝑟𝑥𝑠𝑦 + 𝑟𝑦𝑠𝑥) + 𝐶𝑟𝑦𝑠𝑦 

 𝐶′ = 𝐴𝑠𝑥
2 + 2𝐵𝑠𝑥𝑠𝑦 + 𝐶𝑠𝑦

2                                                                                     (2.7) 

𝐷′ = 𝐴𝑟𝑥𝑥 + 2𝐵𝑟𝑥𝑦 + 𝐶𝑟𝑦𝑦 + 𝐷𝑟𝑥 + 𝐸𝑟𝑦 

𝐸′ = 𝐴𝑠𝑥𝑥 + 2𝐵𝑠𝑥𝑦 + 𝐶𝑠𝑦𝑦 + 𝐷𝑠𝑥 + 𝐸𝑠𝑦 

𝐹′ = 𝐹,       𝐺′ = 𝐺 
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But the discriminant of (2.6) is: 

𝐵′2
− 𝐴′𝐶′ = (𝐵2 − 𝐴𝐶)(𝑟𝑥

2𝑠𝑦
2 − 2𝑟𝑥𝑟𝑦𝑠𝑥𝑠𝑦 + 𝑟𝑦

2𝑠𝑥
2) = (𝐵2 − 𝐴𝐶)(𝑟𝑥𝑠𝑦 − 𝑟𝑦𝑠𝑥)2                (2.8) 

or 

𝐵′2
− 𝐴′𝐶′ = (𝐵2 − 𝐴𝐶)𝐽2                      (2.9) 

where 

𝐽 = |
𝑟𝑥 𝑠𝑥

𝑟𝑦 𝑠𝑦
| 

is the Jacobian of the transformation. Equation (2.8) implies that the form of the equation is invariant with 

respect to an arbitrary transformation of the coordinates, since 𝐽2 is always positive real quantities, and 

the sign of 𝐵′2
− 𝐴′𝐶′ is the same as that of 𝐵2 − 𝐴𝐶. 

 

2.2  Canonical Forms 

 If in the form of 𝐴′ , 𝐵′, 𝐶′ in (2.7), we let; 

𝛼 =
𝑟𝑥

𝑟𝑦
,   𝛽 =

𝑠𝑥

𝑠𝑦
 

we get: 

𝐴′ = [𝐴𝛼2 + 2𝐵𝛼 + 𝐶]𝑟𝑦
2 

𝐵′ = [𝐴𝛼𝛽 + 𝐵(𝛼 + 𝛽) + 𝐶]𝑟𝑦𝑠𝑦                                                               (2.10) 

𝐶′ = [𝐴𝛽2 + 2𝐵𝛽 + 𝐶]𝑠𝑦
2 

We determine the functions 𝑟 and 𝑠 so that 𝐴′ = 0 or 𝐶′ = 0, to get: 

𝐴𝛼2 + 2𝐵𝛼 + 𝐶 = 0  or  𝐴𝛽2 + 2𝐵𝛽 + 𝐶 = 0, with roots’ 

𝛼 =
−𝐵 − √𝐵2 − 𝐴𝐶

𝐴
=

𝑟𝑥

𝑟𝑦
,   𝛽 =

−𝐵 + √𝐵2 − 𝐴𝐶

𝐴
=

𝑠𝑥

𝑠𝑦
                                                   (2.11) 

where 𝐴 ≠ 0, so that the coordinate transformation will be non-singular. 

The functions 𝑟 and 𝑠 may be identified with the constants 𝑐1 and 𝑐2 obtained by integrating 𝑑𝑟 =

0  and 𝑑𝑠 = 0, i.e., 

𝑟 = 𝑐1  and  𝑠 = 𝑐2. 

𝑑𝑟 = 0  and 𝑑𝑠 = 0, gives 𝑟𝑥𝑑𝑥 + 𝑟𝑦𝑑𝑦 = 0 and  𝑠𝑥𝑑𝑥 + 𝑠𝑦𝑑𝑦 = 0 

or 

𝑑𝑦

𝑑𝑥
+

𝑟𝑥

𝑟𝑦
= 0   or    

𝑑𝑦

𝑑𝑥
= −

𝑟𝑥

𝑟𝑦
   and   

𝑑𝑦

𝑑𝑥
+

𝑠𝑥

𝑠𝑦
= 0      or    

𝑑𝑦

𝑑𝑥
= −

𝑠𝑥

𝑠𝑦
 

or from (2.11), 

𝑑𝑦

𝑑𝑥
=

𝐵 − √𝐵2 − 𝐴𝐶

𝐴
    or   

𝑑𝑦

𝑑𝑥
=

𝐵 + √𝐵2 − 𝐴𝐶

𝐴
                                              (2.12) 

Equations (2.12) gives two families of curves called characteristics if 𝐵2 − 𝐴𝐶 > 0;  one family of 

characteristic curves if 𝐵2 − 𝐴𝐶 = 0;  and no family of characteristics if 𝐵2 − 𝐴𝐶 < 0. 

a) Hyperbolic case: Since 𝐵2 − 𝐴𝐶 > 0, it follows that the roots 𝛼 and 𝛽 are real. From (2.6), the 

canonical form in this case is: 

𝑢𝑟𝑠 + 𝑓(𝑟, 𝑠, 𝑢, 𝑢𝑟, 𝑢𝑠) = 0                                                   (2.13) 

where 𝑟 and 𝑠 are obtained by integrating equations (2.12), and 𝐴′ = 𝐶′ = 0. 
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b) Parabolic case: Since 𝐵2 − 𝐴𝐶 = 0, it follows that both roots 𝛼 and 𝛽 equall 
𝐵

𝐴
. Integrating one 

of the equations (2.12) and identifying the result with 𝑟 and 𝑠 can be taken as any function which 

is linearly independent with 𝑟. The canonical form is obtained by setting 𝐴′ = 𝐵′ = 0 in (2.6), 

and we obtain: 

𝑢𝑠𝑠 + 𝑔(𝑟, 𝑠, 𝑢, 𝑢𝑟, 𝑢𝑠) = 0                                                         (2.14) 

𝐍𝐨𝐭𝐞: In the parabolic case, if we identify the result of integrating 
𝑑𝑦

𝑑𝑥
=

𝐵

𝐴
 with 𝑠, and taking 𝑟 to 

be any linearly independent function with 𝑠, we will get the canonical form: 

𝑢𝑟𝑟 + 𝑔(𝑟, 𝑠, 𝑢, 𝑢𝑟, 𝑢𝑠) = 0                                           (2.15) 

which is obtained by setting 𝐵′ = 𝐶′ = 0 in (2.6). 

c) Elliptic case: Since 𝐵2 − 𝐴𝐶 < 0, it follows that the two roots 𝛼 and 𝛽 are complex conjugates: 

 𝛼 =
−𝐵−𝑖√𝐵2−𝐴𝐶

𝐴
,   𝛽 =

−𝐵+𝑖√𝐵2−𝐴𝐶

𝐴
                                          (2.16) 

The results are formally the same as those of the hyperbolic case, except that we have complex 

rather than real quantities. Since it is more convenient to deal with real quantities, we make 

further transformation: 

𝜇 = 𝑟 + 𝑠,            𝜈 = 𝑖(𝑟 − 𝑠) 

Thus, the term 𝑢𝑟𝑠 in (2.13) from equation (2.3) may be written as: 

𝑢𝑟𝑠 = 𝑢𝜇𝜇𝜇𝑟𝜇𝑠 + 𝑢𝜇𝜈(𝜇𝑟𝜈𝑠 + 𝜇𝑠𝜈𝑟) + 𝑢𝜈𝜈𝜈𝑟𝜈𝑠 + 𝑢𝜇𝜇𝑟𝑠 + 𝑢𝜈𝜈𝑟𝑠     𝑜𝑟    𝑢𝑟𝑠 = 𝑢𝜇𝜇 + 𝑢𝜈𝜈; 

Since  

𝜇𝑟 = 𝜇𝑠 = 1, 𝜈𝑟 = 𝑖, 𝜈𝑠 = −𝑖, 𝜇𝑟𝑠 = 𝜈𝑟𝑠 = 0 

Hence, the required canonical from is: 

𝑢𝜇𝜇 + 𝑢𝜈𝜈 + ℎ(𝜇, 𝜈, 𝑢, 𝑢𝜇 , 𝑢𝜈) = 0                                                                (2.17)  

 

Summary 

 Hyperbolic Parabolic Elliptic 

Sign of 𝐵2 − 𝐴𝐶 Positive Zero Negative 

Family of characteristics 2 1 0 

Canonical or standard form 𝑢𝑟𝑠 𝑢𝑟𝑟 or  𝑢𝑠𝑠 𝑢𝑟𝑟 + 𝑢𝑠𝑠 

 

 

Examples 2.3: Reduce to canonical form, and hence find the general solution if the equation is hyperbolic 

or parabolic: 

a) 𝑢𝑥𝑥 + 2𝑢𝑥𝑦 + 𝑢𝑦𝑦 = 2 

b) 𝑢𝑥𝑥 − 2𝑢𝑥𝑦 + 𝑢𝑦𝑦 = 0 

c) 𝑢𝑥𝑥 + 2𝑢𝑥𝑦 + 2𝑢𝑦𝑦 = 4 

d) 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

 

Solution: 

a) 𝑢𝑥𝑥 + 2𝑢𝑥𝑦 + 𝑢𝑦𝑦 = 2              (1) 

Here 𝐴 = 1, 𝐵 = 1, 𝐶 = 1, and so the discriminant 𝐵2 − 𝐴𝐶 = 1 − 1 = 0, which means the equation is 

parabolic. Thus it gives one family of characteristic curve with root as −
𝐵

𝐴
: 
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𝑑𝑦

𝑑𝑥
= −

𝑟𝑥

𝑟𝑦
=

𝐵

𝐴
= 1    ⇒     𝑑𝑦 = 𝑑𝑥 

which is integrated to get: 

𝑦 = 𝑥 + 𝑐1    or    𝑦 − 𝑥 = 𝑐1  

Identifying the constant 𝑐1 with the canonical coordinate 𝑟, we have: 

𝑟 = 𝑦 − 𝑥 

And since 𝑦 + 𝑥 and 𝑦 − 𝑥 are linearly independent, we select the second canonical coordinates as: 

𝑠 = 𝑦 + 𝑥 

So that 

|
𝑦 −𝑥
𝑦 𝑥 | ≠ 0    i. e., non − singular 

Thus, evaluating the first and second derivatives of 𝑟 and 𝑠 with respect to 𝑥 and 𝑦, we obtain: 

𝑟𝑥 = −1, 𝑟𝑦 = 1, 𝑠𝑥 = 1, 𝑠𝑦 = 1,    𝑎𝑛𝑑   𝑟𝑥𝑥 = 𝑟𝑥𝑦 = 𝑟𝑦𝑦 = 𝑠𝑥𝑥 = 𝑠𝑥𝑦 = 𝑠𝑦𝑦 = 0 

Now substituting for 𝑢𝑥𝑥, 𝑢𝑥𝑦 and 𝑢𝑦𝑦 in the equation, by applying (2.3), (2.4) and (2.5), we have: 

𝑢𝑥𝑥 = 𝑢𝑟𝑟𝑟𝑥
2 + 2𝑢𝑟𝑠𝑟𝑥𝑠𝑥 + 𝑢𝑠𝑠𝑠𝑥

2 = 𝑢𝑟𝑟 − 2𝑢𝑟𝑠 + 𝑢𝑠𝑠                   (2) 

𝑢𝑦𝑦 = 𝑢𝑟𝑟𝑟𝑦
2 + 2𝑢𝑟𝑠𝑟𝑦𝑠𝑦 + 𝑢𝑠𝑠𝑠𝑦

2 = 𝑢𝑟𝑟 + 2𝑢𝑟𝑠 + 𝑢𝑠𝑠                   (3) 

𝑢𝑥𝑦 = 𝑢𝑟𝑟𝑟𝑥𝑟𝑦 + 2𝑢𝑟𝑠(𝑟𝑥𝑠𝑦 + 𝑟𝑦𝑠𝑥) + 𝑢𝑠𝑠𝑠𝑥𝑠𝑦 = −𝑢𝑟𝑟 + 2𝑢𝑟𝑠(−1 + 1) + 𝑢𝑠𝑠 = −𝑢𝑟𝑟 + 𝑢𝑠𝑠             (4) 

Substituting into equation (1) and evaluating, we have: 

𝑢𝑟𝑟 − 2𝑢𝑟𝑠 + 𝑢𝑠𝑠 + 2(−𝑢𝑟𝑟 + 𝑢𝑠𝑠) + 𝑢𝑟𝑟 + 2𝑢𝑟𝑠 + 𝑢𝑠𝑠 = 2 

or 

4𝑢𝑠𝑠 = 2          ⇒             𝑢𝑠𝑠 =
1

2
                   (5) 

which is the required canonical form. Integrating (5) twice with respect to 𝑠, gives: 

𝑢𝑠 =
1

2
𝑠 + 𝑓(𝑟) 

and 

𝑢(𝑥, 𝑦) =
1

4
𝑠2 + 𝑠𝑓(𝑟) + 𝑔(𝑟) 

Now, substituting for r and s in this equation, we obtain the general solution: 

𝑢(𝑥, 𝑦) =
1

4
(𝑦 + 𝑥)2 + (𝑦 + 𝑥)𝑓(𝑦 − 𝑥) + 𝑔(𝑦 − 𝑥) 

where 𝑓 and 𝑔 are arbitrary functions of their arguments. 

  

3. Equations of Mathematical Physics 
 

The most frequently encountered PDE’s in practice are members of the classical equations of 

mathematical physics. The majority of these can be obtained by suitably specialising the form: 

∇2𝑢 + 𝛼𝑢 = 𝛽𝑢𝑡𝑡 + 𝛾𝑢𝑡 − 𝐹                                  (3.1) 

where 𝛼, 𝛽, and 𝛾 are certain specified physical constants and F is of a special function of position (and 

probably time). The operator ∇2 the Laplacian operator, and the quantity ∇2 is called simply the 

Laplacian. 
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The Laplacian is a measure of the difference between the value of 𝑢 at a point and the average value of 

𝑢 in a small neighbourhood of the point. Since this difference influences the further space-time evolution 

of the unknown function 𝑢 in problems of diffusion processes, wave propagation, and potential theory, we 

find that the Laplacian is fundamental to most of the equations of mathematical physics. In rectangular 

coordinates the Laplacian takes the form: 

∇2𝑢 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧                                   (3.2) 

It is often necessary to consider coordinate systems other than rectangular – the most advantageous in a 

particular problem generally being dictated by the shape of the region of interest. For such problems, we 

must find expressions comparable to (3.2) for the Laplacian in these other coordinate systems. 
 

Specific equations arising out of (3.1) include the following: 

∇2𝑢 = 𝑎−2𝑢𝑡                   (heat equation) 

∇2𝑢 = 𝑐−2𝑢𝑡𝑡                   (wave equation) 

∇2𝑢 = 0                                      (potential equation) 

∇2𝑢 + 𝑘2𝑢 = 0                            (Helmholtz equation) 

∇2𝑢 = −𝐹                                 (Poisson equation) 

These PDE’s play an important role in many diverse areas of application. However, other PDE’s occur in 

certain applications that are not specialisations of (3.1), but will not be given separate treatment. 

 

Example 3.1: Solve the 1-D wave equation problem: 𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 = 0  for 0 < 𝑥 < 𝐿, 𝑡 > 0 

with the boundary condition: 

𝑢(𝑥, 0) = 𝑓(𝑥)  for  0 ≤ 𝑥 ≤ 𝐿  
𝑢𝑡(𝑥, 0) = 𝑔(𝑥)  for  0 ≤ 𝑥 ≤ 𝐿  
 

Solution: 

Here 𝐴 = 1, 𝐵 = 0, 𝐶 = −𝑐2. The discriminant 𝐵2 − 𝐴𝐶 = 𝑐2 > 0, and so the equation is hyperbolic. 

The ODE’s to solve to obtain the two families of characteristic are: 

𝑑𝑥

𝑑𝑡
=

𝐵 ± √𝐵2 − 𝐴𝐶

𝐴
= ±𝑐 

Which are integrated to get 𝑥 + 𝑐𝑡 = 𝑐1, 𝑥 − 𝑐𝑡 = 𝑐2. We identify the canonical coordinates 𝑟 and 𝑠 with 

the constants 𝑐1 and 𝑐2 to obtain: 

𝑟 = 𝑥 + 𝑐𝑡,     𝑠 = 𝑥 − 𝑐𝑡                     (1) 

Thus, 

𝑟𝑥 = 𝑠𝑥 = 1,   𝑟𝑡 = 𝑐, 𝑠𝑡 = −𝑐, 𝑟𝑥𝑥 = 𝑟𝑡𝑡 = 𝑠𝑥𝑥 = 𝑠𝑡𝑡 = 0 
and so, 

𝑢𝑥𝑥 = 𝑢𝑟𝑟𝑟𝑥
2 + 2𝑢𝑟𝑠𝑟𝑥𝑠𝑥 + 𝑢𝑠𝑠𝑠𝑥

2 = 𝑢𝑟𝑟 + 2𝑢𝑟𝑠 + 𝑢𝑠𝑠 

𝑢𝑡𝑡 = 𝑢𝑟𝑟𝑟𝑡
2 + 2𝑢𝑟𝑠𝑟𝑡𝑠𝑡 + 𝑢𝑠𝑠𝑠𝑡

2 = 𝑐2𝑢𝑟𝑟 − 𝑐2𝑢𝑟𝑠 + 𝑐2𝑢𝑡𝑡 = 𝑐2(𝑢𝑟𝑟 − 𝑢𝑟𝑠 + 𝑢𝑡𝑡) 

These are employed in 𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 = 0 to get: 

−4𝑐2𝑢𝑟𝑠 = 0,     𝑜𝑟    𝑢𝑟𝑠 = 0                  (2) 

Which is the canonical form of the PDE. Integrating (2) with respect to s yields: 

𝑢𝑟 = 𝑝(𝑟)  and   𝑢 = 𝑝(𝑟) + 𝑞(𝑠) 

Using (1), we obtain the general solution: 
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𝑢(𝑥, 𝑡) = 𝑝(𝑥 + 𝑐𝑡) + 𝑞(𝑥 − 𝑐𝑡)                          (3) 

where 𝑝 and 𝑞 are arbitrary functions of their argument. (3) is called D’Alembert’s solution of the 1-D 

wave equation: 𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 = 0 . 
Therefore, 

𝑢𝑡(𝑥, 𝑡) = 𝑐𝑝′(𝑥 + 𝑐𝑡) − 𝑐𝑞′(𝑥 − 𝑐𝑡)                     (4) 

From (3) and (4), the initial conditions: 𝑢(𝑥, 0) = 𝑓(𝑥),   𝑢𝑡(𝑥, 0) = 𝑔(𝑥)      for    0 ≤ 𝑥 ≤ 𝐿 

we have: 

              𝑝(𝑥) + 𝑞(𝑥) = 𝑓(𝑥)        for  0 ≤ 𝑥 ≤ 𝐿                    (5) 

             𝑐𝑝′(𝑥) + 𝑐𝑞′(𝑥) = 𝑓(𝑥)  for  0 ≤ 𝑥 ≤ 𝐿                    (6) 

Multiplying the derivative of (5) by 𝑐 and adding to (6) yields: 

𝑝′(𝑥) =
1

2
𝑓′(𝑥) +

1

2𝑐
𝑔(𝑥)  for   0 ≤ 𝑥 ≤ 𝐿 

which is integrated with respect to 𝑥 to obtain: 

𝑝(𝑥) =
1

2
𝑓(𝑥) +

1

2𝑐
∫ 𝑔(𝜏)𝑑𝜏 + 𝐾   for  0 ≤ 𝑥 ≤ 𝐿

𝑥

0

                      (7) 

where 𝐾 is an integration constant. Employing (7) in (5) gives: 

𝑞(𝑥) =
1

2
𝑓(𝑥) −

1

2𝑐
∫ 𝑔(𝜏)𝑑𝜏 − 𝐾  for  0 ≤ 𝑥 ≤ 𝐿

𝑥

0

                (8) 

Replacing 𝑥 with 𝑥 + 𝑐𝑡 in (7), and 𝑥 with 𝑥 − 𝑐𝑡 in (8), and substituting these results in (3) yields: 

𝑢(𝑥, 𝑡) =
1

2
[𝑓(𝑥 + 𝑐𝑡) + 𝑓(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫ 𝑔(𝜏)𝑑𝜏 −

1

2𝑐
∫ 𝑔(𝜏)𝑑𝜏

𝑥−𝑐𝑡

0

𝑥+𝑐𝑡

0

 

                                            =
1

2
[𝑓(𝑥 + 𝑐𝑡) + 𝑓(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫ 𝑔(𝜏)𝑑𝜏

𝑥+𝑐𝑡

𝑥−𝑐𝑡

 

provided 0 ≤ 𝑥 ± 𝑐𝑡 ≤ 𝐿. 

Assignment 
 

Classify the PDE as hyperbolic, parabolic, or elliptic and find its general solutions: 

1. 𝑢𝑥𝑥 − 3𝑢𝑥𝑦 + 2𝑢𝑦𝑦 = 0                          3.   4𝑢𝑡𝑡 − 12𝑢𝑥𝑡 + 9𝑢𝑥𝑥 = 0 

2. 𝑢𝑥𝑥 + 𝑎2𝑢𝑦𝑦 = 0, (𝑎 ≠ 0)    4.    𝑢𝑥𝑥 + 2𝑢𝑥𝑦 + 5𝑢𝑦𝑦 = 0    

 

4. Separation of Variables 
 

For a linear homogeneous PDE, it is sometimes possible to find a particular solution in the form of a 

product: 

𝑢(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) 

The use of the above product, called the method of separation of variables may enable us to reduce a PDE 

to at least two ODEs. This general method of attack is mostly useful in solving PDEs of the type (3.1) 

above and may also be referred to as Bernoulli product method. 
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Theorem: (Superimposition Principle) 
 

If 𝑢1, 𝑢2, … , 𝑢𝑘 are solutions of a homogeneous PDE, then the linear combination: 

𝑢 = ∑ 𝑐𝑛𝑢𝑛

𝑘

𝑛=1

 

is also a solution, where 𝑐1, 𝑐2, … , 𝑐𝑘 are constants. Generally, if we have an infinite set of solutions of a 

linear homogeneous PDE denoted by 𝑢1, 𝑢2, …, we can construct another solution u by forming the 

infinite series: 

𝑢 = ∑ 𝑢𝑛

∞

𝑛=1

 

The combination of the separation of variables and the superimposition of solutions, sometimes called 

Fourier method will use Fourier cosine or sine series. 

 

 

Example 4.1: Solve the heat conduction problem: 𝑘𝑢𝑥𝑥 = 𝑢𝑡 , for   𝑘 > 0, 0 < 𝑥 < 𝐿, 𝑡 > 0 

Boundary conditions 

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0 

𝑢(𝑥, 0) = 𝑓(𝑥) 

where 𝑘 is a constant called the thermal diffusivity. 

 

Solution: Employing the method of separation of variables, we assume a solution in the form: 

𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)                                              (1) 

 

Substituting into the PDE, we have: 

𝑘𝑋′′𝑇 = 𝑋𝑇′ 𝑜𝑟  
𝑋′′

𝑋
=

𝑇′

𝑘𝑇
                                 (2) 

Since the LHS of (2) is a function only of x and the RHS is a function only of 𝑡, it follows that both sides 

must be independent of both 𝑥 and 𝑡, and so must be equal to a constant, say −𝜆2. Thus, 
𝑋′′

𝑋
=

𝑇′

𝑘𝑇
= −𝜆2                                        (3) 

and hence,  

𝑋′′ + 𝜆2𝑋 = 0, 𝑋(0) = 𝑋(𝐿) = 0                             (4) 
and 

𝑇′ + 𝑘𝜆2𝑇 = 0                                                                         (5) 

Since the boundary conditions 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, implies that 𝑋(0)𝑇(𝑡) = 𝑋(𝐿)𝑇(𝑡) = 0. 

Thus, the general solution of the ODE in (4) is: 

𝑋(𝑥) = 𝑐1 cos 𝜆𝑥 + 𝑐2 sin 𝜆𝑥 

where  𝑐1 and 𝑐2 are arbitrary constants. The boundary conditions in (4) gives: 

𝑋(0) = 𝑐1 = 0 
and 

𝑋(𝐿) = 𝑐1 cos 𝜆𝐿 + 𝑐2 sin 𝜆𝐿 = 𝑐2 sin 𝜆𝐿 = 0 

Since 𝑐2 ≠ 0 for non-trivial solution, therefore sin 𝜆𝐿 = 0, which implies that: 

𝜆𝐿 = 𝑛𝜋,   𝑛 = 1,2, …      𝑜𝑟   𝜆 =
𝑛𝜋

𝐿
,   𝑛 = 1,2, … 

The values of 𝜆 are called the eigenvalues of the problem. Therefore, the corresponding eigenfunctions 

are:  



 

Dr. E.O. Ohwadua                     Theory of Partial Differential Equations 14 

𝑋𝑛(𝑥) = 𝑐2𝑛 sin (
𝑛𝜋𝑥

𝐿
) , 𝑛 = 1,2, …                               (6) 

However, the general solution of (5) is: 

𝑇(𝑡) = 𝑐3𝑒−𝑘𝜆2𝑡 

where 𝑐3 is an arbitrary constant. 

Since 𝜆 =
𝑛𝜋

𝐿
, we obtain: 

𝑇𝑛(𝑡) = 𝑐3𝑒
−𝑘𝑛2𝜋2𝑡

𝐿2 , 𝑛 = 1,2, …                    (7) 
Employing (6) and (7) in (1) yields: 

𝑢𝑛(𝑥, 𝑡) = 𝑋𝑛(𝑥)𝑇𝑛(𝑡) = 𝐴𝑛𝑒
−𝑘𝑛2𝜋2𝑡

𝐿2 sin (
𝑛𝜋𝑥

𝐿
) 

where 𝐴𝑛 = 𝑐2𝑛𝑐3𝑛. By superimposition principle, we have: 

𝑢(𝑥, 𝑡) = ∑ 𝐴𝑛𝑒
−𝑘𝑛2𝜋2𝑡

𝐿2 sin (
𝑛𝜋𝑥

𝐿
)

∞

𝑛=1

                                      (8) 

Applying the initial condition, 𝑢(𝑥, 0) = 𝑓(𝑥) gives: 

𝑓(𝑥) = ∑ 𝐴𝑛 sin (
𝑛𝜋𝑥

𝐿
)

∞

𝑛=1

 

which is a Fourier sine series for 𝑓(𝑥). Thus, 

𝐴𝑛 =
2

𝐿
∫ 𝑓(𝑥)

𝐿

0

sin (
𝑛𝜋𝑥

𝐿
) 𝑑𝑥,   𝑛 = 1,2, …                                 (9) 

Hence the required particular solution of the problem is (8), where 𝐴𝑛 is given by (9). 

 

 

Example 4.2: Solve the Laplace equation: 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 for 0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏, subject to the 

boundary conditions: 

𝑢(𝑥, 0) = 𝑢𝑥(0, 𝑦) = 𝑢𝑥(𝑎, 𝑦) = 0 

𝑢(𝑥, 𝑏) = 𝑓(𝑥) 
 

Solution: 

Let  

𝑢(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦)                          (1) 
Then the Laplace equation becomes: 

𝑋′′𝑌 + 𝑌′′𝑋 = 0,      or    
𝑋′′

𝑋
+

𝑌′′

𝑌
= 0  

Therefore, 
𝑋′′

𝑋
= −

𝑌′′

𝑌
= −𝜆2(constant) 

and so, 

𝑋′′ + 𝜆2𝑋 = 0, 𝑋′(0) = 𝑋′(𝑎) = 0                                  (2) 
and 

𝑌′′ − 𝜆2𝑌 = 0, 𝑌(0) = 0, 𝑌(𝑏) = 𝑓(𝑥)                          (3) 
Thus, the general solution of the ODE in (2) is: 

𝑋(𝑥) = 𝑐1 cos 𝜆𝑥 + 𝑐2 sin 𝜆𝑥                         (4) 

where 𝑐1 and 𝑐2 are arbitrary constants. 

Thus, 

𝑋′(𝑥) = −𝜆𝑐1 sin 𝜆𝑥 + 𝜆𝑐2 cos 𝜆𝑥                   (5) 

Applying the boundary condition, we have: 
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𝑋′(0) = −𝜆𝑐1 sin(0) + 𝜆𝑐2 cos(0) = 𝜆𝑐2 = 0 

But 𝜆 ≠ 0, so 𝑐2 = 0, which gives: 𝑋(𝑥) = 𝑐1 cos 𝜆𝑥 

Next, applying the second BC, we have: 

𝑋′(𝑎) = −𝜆𝑐1 sin 𝜆𝑎 + 𝜆𝑐2 cos 𝜆𝑎 = 0 

But since 𝑐2 = 0 and 𝑐1 ≠ 0, we have: 

−𝜆𝑐1 sin 𝜆𝑎 = 0   ⇒ 𝜆 = 0  or sin 𝜆𝑎 = 0   ⇒ 𝜆𝑎 = 𝑛𝜋,   𝑛 = 1,2, … 

and so for 𝜆 ≠ 0, the eigenvalues of the problem are: 𝜆 =
𝑛𝜋

𝑎
, 𝑛 = 1,2, … 

Thus, the corresponding eigenfunction are: 

𝑋(𝑥) = 𝑐1 cos 𝜆𝑥 and  𝑋𝑛(𝑥) = 𝑐1 cos
𝑛𝜋

𝑎
𝑥, 𝑛 = 1,2, …                            (6) 

Next, the general solution of the ODE (3) is: 

𝑌(𝑦) = 𝑐3 cosh 𝜆𝑦 + 𝑐4 sinh 𝜆𝑦                                 (7) 

Where 𝑐3 and 𝑐4 are arbitrary constants. 

Applying the BC for (7), 𝑌(0) = 0, we have: 

𝑌(0) = 𝑐3 cosh(0) + 𝑐4 sinh(0) = 𝑐3 = 0 

Therefore, for 𝜆 ≠ 0, we have: 

𝑌(𝑦) = 𝑐4 sinh 𝜆𝑦      and   𝑌𝑛(𝑦) = sinh
𝑛𝜋

𝑎
𝑦 ,       𝑛 = 1,2, …                          (8) 

However, if 𝜆 = 0, then (3) becomes: 

𝑌′′ = 0                                   (9) 
which yields: 

𝑌(𝑦) = 𝑐5𝑦 + 𝑐6                                     (10) 

where 𝑐5 and 𝑐6 are arbitrary constants. 

Thus, 

𝑌(0) = 𝑐5(0) + 𝑐6 = 0,   i. e. , 𝑐6 = 0 
So that from (10): 

𝑌(𝑦) = 𝑐5𝑦                                             (11) 
Now, employing (6), (8) and (11) in (1) and utilizing superimposition principle, we obtain: 

𝑢(𝑥, 𝑦) =
𝐴0

1
𝑦 + ∑ 𝐴𝑛 sinh

𝑛𝜋𝑦

𝑎
cos

𝑛𝜋𝑥

𝑎

∞

𝑛=1

                              (12) 

Which is a Fourier cosine series for 𝑓(𝑥) and 𝑐5 = 𝐴0,  𝑐1𝑛𝑐4𝑛 = 𝐴𝑛 

Thus, applying the final BC, 𝑌(𝑏) = 𝑓(𝑥), we have: 

𝐴0𝑏 = 𝑓(𝑥)   or   𝐴0𝑏 =
1

𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑎

0

                           (13) 

and 

𝐴𝑛 sinh
𝑛𝜋𝑏

𝑎
=

2

𝑎
∫ 𝑓(𝑥) cos

𝑛𝜋𝑥

𝑎
𝑑𝑥,     𝑛 = 1,2, …                    (14)

𝑎

0

 

Therefore, 

𝐴0 =
1

𝑎𝑏
∫ 𝑓(𝑥)𝑑𝑥

𝑎

0

                      (15) 

and 

𝐴𝑛 =
2

𝑎 sinh
𝑛𝜋𝑏

𝑎

∫ 𝑓(𝑥) cos
𝑛𝜋𝑥

𝑎
𝑑𝑥,     𝑛 = 1,2, …                    (16)

𝑎

0

 

Hence the required particular solution is (12), with 𝐴0 and 𝐴𝑛 given by (15) and (16) respectively. 
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Example 4.3: Use the separation of variables to solve: 𝑢𝑥 + 2𝑢𝑦 = 0,    𝑢(0, 𝑦) = 3𝑒−2𝑦. 

 

Solution: By writing 𝑢(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) and substituting this product from into the PDE, we obtain: 

𝑋′(𝑥)𝑌(𝑦) + 2𝑋(𝑥)𝑌′(𝑦) = 0   
which can also be expressed in the form: 

𝑋′

2𝑋
= −

𝑌′

𝑌
 

Here we have separated the variables, and by equating each side of the equation to the constant −𝜆2, we 

get the ODEs: 

𝑋′ + 2𝜆2𝑋 = 0                                        (1) 

and 

𝑌′ − 𝜆2𝑌 = 0                                      (2) 
Equations (1) and (2) have solutions given respectively by: 

𝑋(𝑥) = 𝑐1𝑒−2𝜆2𝑥            and             𝑌(𝑦) = 𝑐2𝑒𝜆2𝑦 
and thus, 

𝑢(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) = 𝑐1𝑒−2𝜆2𝑥 ∙ 𝑐2𝑒𝜆2𝑦 = 𝐴𝑒−𝜆2(2𝑥−𝑦)  
where 𝐴 = 𝑐1𝑐2. 

If we apply the auxiliary condition, we find: 

𝑢(0, 𝑦) = 𝐴𝑒𝜆2𝑦 = 3𝑒−2𝑦 

and hence, 𝐴 = 3, 𝜆2 = −2. 

Our solution is therefore: 

𝑢(𝑥, 𝑦) = 3𝑒2(2𝑥−𝑦) 
 

Assignment 
 

Find the solutions by the method of separation of variables: 
 

1. 𝑢𝑥 = 𝑢𝑦,    𝑢(0, 𝑦) = 2𝑒3𝑦. 

2. 𝑢𝑥 + 𝑢 = 𝑢𝑦,   𝑢(𝑥, 0) = 4𝑒−3𝑥 

3. 𝑢𝑥𝑥 = 𝑢𝑡𝑡,    𝑢(0, 𝑡) = 0,   𝑢(𝜋, 𝑡) = 0,   𝑢(𝑥, 0) = sin 3𝑥 ,   𝑢𝑡(𝑥, 0) = 0. 

4. 𝑥2𝑢𝑥𝑦 + 3𝑦2𝑢 = 0,    𝑢(𝑥, 0) = 𝑒
1

𝑥 

5. 𝑢𝑥𝑥 =
2

𝑘
𝑢𝑡 + 𝑢,   𝑢(1, 𝑡) = 0,   𝑢𝑥(0, 𝑡) = −𝑏𝑒−𝑘𝑡,   (𝑘, 𝑏 constants). 

 

 

5. Solutions by ODE Methods 
 

Most PDEs must be solved by a general solution technique, such as separation of variables or a transform 

method, or in some cases by a numerical procedure. However, occasionally, the PDE of interest is simple 

enough that its form may suggest a method of solution.  

 

Example 5.1: Find a solution of the boundary value problem: 𝑢𝑥𝑦 − 𝑢𝑦 = 5;  

                                                                                                   𝑢𝑦(0, 𝑦) = 3𝑦2, 𝑢(𝑥, 0) = 0 

 

Solution: By writing the PDE as: 
𝜕

𝜕𝑦
(𝑢𝑥 − 𝑢) = 5 

we can hold 𝑥 fixed and integrate with respect to 𝑦 to obtain: 

𝑢𝑥 − 𝑢 = 5𝑦 + 𝐹(𝑥) 
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where 𝐹 is an arbitrary, differentiable function of 𝑥. For fixed 𝑦, this last equation is a first-order liner 

DE, whose general solution is readily found to be: 

𝑢(𝑥, 𝑦) = 𝑒𝑥𝐺(𝑦) − 5𝑦 + 𝑒𝑥 ∫ 𝑒−𝑥𝐹(𝑥)𝑑𝑥 = 𝑒𝑥𝐺(𝑦) − 5𝑦 + 𝐻(𝑥) 

where we define 𝐻(𝑥) = 𝑒𝑥 ∫ 𝑒−𝑥𝐹(𝑥)𝑑𝑥. 

Now, imposing the first auxiliary condition, we have: 

𝑢𝑦(0, 𝑦) = 𝐺′(𝑦) − 5 = 3𝑦2 

from which we deduce; 

𝐺(𝑦) = 𝑦3 + 5𝑦 + 𝑐 

where 𝑐 is a constant. Hence: 

𝑢(𝑥, 𝑦) = 𝑒𝑥(𝑦3 + 5𝑦 + 𝑐) − 5𝑦 + 𝐻(𝑥) 
and second condition leads to: 

𝑢(𝑥, 0) = 𝑐𝑒𝑥 + 𝐻(𝑥) = 0      or     𝐻(𝑥) = −𝑐𝑒𝑥 
Our solution now takes the form: 

𝑢(𝑥, 𝑦) = 𝑒𝑥(𝑦3 + 5𝑦) − 5𝑦 
 

Assignment 
 

Use ODE methods to find the solution satisfying the prescribed boundary conditions: 

1. 𝑢𝑥 = sin 𝑦 ;    𝑢(0, 𝑦) = 0 

2. 𝑢𝑦𝑦 = 𝑥2 cos 𝑦 ;    𝑢(𝑥, 0) = 0,   𝑢 (𝑥,
𝜋

2
) = 0 

3. 𝑢𝑥𝑦 = 4𝑥𝑦 + 𝑒𝑥;    𝑢𝑦(0, 𝑦) = 𝑦,   𝑢(𝑥, 0) = 2  

4. 𝑢𝑥𝑦 + 4𝑢𝑥 = 2𝑥;    𝑢(0, 𝑦) = 1,   𝑢𝑥(𝑥, 0) = 0 

5. 𝑢𝑥𝑦 = 𝑢𝑥 + 2;     𝑢(0, 𝑦) = 0,   𝑢𝑥(𝑥, 0) = 𝑥2 

 

 

 

6. Fourier Series 
 

One of the most important problems in mathematical analysis is the determination of various 

representations of a given function. A particular representation of a function often enables us to deduce 

properties of that function that are not as readily ascertained by a different representation. Power series 

are especially useful in this regard, but here we wish to extend our notion of infinite series to include 

those involving sines and cosines, called Fourier series. When the function involved is either even or odd, 

the full Fourier trigonometric series reduces to either a cosine series for an even function or a sine series 

for an odd function. 
 

Fourier analysis, or harmonic analysis as it is now often called, has turned out to be tremendously 

important in virtually all areas of pure and applied mathematics and the physical sciences. It is one of the 

best examples of a mathematics tool that was invented to solve a specific problem and has turned out to 

be an important tool for solving many other problems. 

 

6.1 Fourier Series of Periodic Functions 
 

A function 𝑓 is called periodic if there exists a constant 𝑇 > 0 for which 

𝑓(𝑥 + 𝑇) = 𝑓(𝑥)  for all 𝑥 

The smallest value of 𝑇 for which the property holds is called the fundamental period, or simply, the 

period (see fig. 6.1). It follows that if: 

𝑓(𝑥 + 𝑇) = 𝑓(𝑥) 
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Then also; 

𝑓(𝑥 ± 𝑇) = 𝑓(𝑥 ± 2𝑇) = 𝑓(𝑥 ± 3𝑇) = ⋯ = 𝑓(𝑥) 

 

 

 

 

 

 

 

 

Fig. 6.1 

 

Periodic functions appear in a wide variety of physical problems, such as those concerning vibrating 

springs and membranes, planetary motion, a swinging pendulum, and musical sounds, etc. Many of these  

Phenomena involve periodic function of a complicated nature, so in order to better understand such 

functions it is desirable to express them in terms of a set of simple periodic functions. Doing so has the 

effect of decomposing a periodic phenomenon into its simple harmonic components. 
 

Perhaps the simplest set of periodic functions is given by: 
 

1;  cos 𝑥, sin 𝑥;  cos 2𝑥 , sin 𝑥 ;  cos 3𝑥 , sin 3𝑥;    … ; 
 

which all have period 2𝜋, it may seem reasonable to look for a representation of 𝑓 in terms of the above 

simple sinusoidal functions. The series arising in this connection will be of the form: 

𝑓(𝑥) = 𝐴0 + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)

∞

𝑛=1

                                   (6.1) 

Where 𝐴0, 𝑎1, 𝑎2, . . . , 𝑏1, 𝑏2, . . ., are constants. Such a series is called a Fourier (trigonometric) series. 

 

Our method depends upon the evaluation of certain definite integrals involving the sines and cosines 

appearing in (6.1). First, if 𝑛 and 𝑘 are any nonzero integers, it can be shown that: 

∫ cos 𝑛𝑥 𝑑𝑥 = ∫ sin 𝑛𝑥 𝑑𝑥 = ∫ sin 𝑛𝑥 cos 𝑘𝑥 𝑑𝑥 = 0                             (6.2)

𝜋

−𝜋

𝜋

−𝜋

𝜋

−𝜋

 

and also, 

∫ cos 𝑛𝑥 cos 𝑘𝑥 𝑑𝑥 = ∫ sin 𝑛𝑥 sin 𝑘𝑥 𝑑𝑥 = {
0,   𝑘 ≠ 𝑛
𝜋   𝑘 = 𝑛

                             (6.3)

𝜋

−𝜋

𝜋

−𝜋

 

 

These integral formulas can be derived directly through simple integration techniques. The integral 

relations (6.2) suggest that integrating (6.1) from – 𝜋 to 𝜋 will greatly simplify the right–hand side. To do 

this, we must tacitly assume that termwise integration is justified. Proceeding in this fashion, we obtain: 
 

∫ 𝑓(𝑥) 𝑑𝑥

𝜋

−𝜋

= 𝐴0 ∫  𝑑𝑥 + ∑ (𝑎𝑛 ∫ cos 𝑛𝑥 𝑑𝑥 + 𝑏𝑛 ∫ sin 𝑛𝑥 

𝜋

−𝜋

𝑑𝑥

𝜋

−𝜋

)

∞

𝑛=1

𝜋

−𝜋

 

 

In view of the integral relations (6.2), we see that each term of the series integrates to zero, and from the 

remaining nonzero integrals, we find; 

𝐴0 =
1

2𝜋
∫ 𝑓(𝑥) 𝑑𝑥

𝜋

−𝜋

                               (6.4) 

 

𝑇 

𝑥 

𝑓(𝑥) 
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This identifies the constant 𝐴0 as the average value of 𝑓(𝑥) over the interval [−𝜋, 𝜋]. Next, we multiply 

(6.1) by cos 𝑘𝑥 and integrate termwise to obtain: 

∫ 𝑓(𝑥) cos 𝑘𝑥 𝑑𝑥 = 𝐴0 ∫ cos 𝑘𝑥  𝑑𝑥

𝜋

−𝜋

𝜋

−𝜋

+ ∑ (𝑎𝑛 ∫ cos 𝑛𝑥 cos 𝑘𝑥 𝑑𝑥 + 𝑏𝑛 ∫ sin 𝑛𝑥 

𝜋

−𝜋

cos 𝑘𝑥 𝑑𝑥

𝜋

−𝜋

)

∞

𝑛=1

 

Because (6.2) and (6.3), all terms integrate to zero except for the coefficient of 𝑎𝑛 corresponding to 𝑛 =
𝑘, and here we get: 

∫ 𝑓(𝑥) cos 𝑘𝑥 𝑑𝑥 = 𝑎𝑘 ∫ cos2 𝑘𝑥 𝑑𝑥

𝜋

−𝜋

𝜋

−𝜋

= 𝜋𝑎𝑘 

or 

𝑎𝑘 =
1

𝜋
∫ 𝑓(𝑥) cos 𝑘𝑥 𝑑𝑥,     𝑘 = 1,2,3, …                                (6.5)

𝜋

−𝜋

 

In the same fashion, if we multiply the series (6.1) by sin 𝑘𝑥 and integrate the result termwise, we 

generate the final formula: 

𝑏𝑘 =
1

𝜋
∫ 𝑓(𝑥) sin 𝑘𝑥 𝑑𝑥,     𝑘 = 1,2,3, …                                (6.6)

𝜋

−𝜋

 

Constants defined by (6.4-6.6) are known as Fourier coefficients (also called Euler’s formulas). It is 

customary in the literature to set: 

𝐴0 =
𝑎0

2
 

so that we can write the above formula more compactly as: 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥,     𝑛 = 1,2,3, …                                (6.7)

𝜋

−𝜋

 

(now changing the index back to 𝑛) and 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥,     𝑛 = 1,2,3, …                                (6.8)

𝜋

−𝜋

 

Thus, (6.1) now takes the form: 

𝑓(𝑥) =
1

2
𝑎0 + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)                                                       (6.9)

∞

𝑛=1

 

 

Writing the constant term as 
𝑎0

2
 does not aid in its computation, only in the compactness of the formula 

(6.7). In general, we find that 𝑎0 must be evaluated separately from the rest of the 𝑎′s. 

 

Example 6.1: Find the Fourier series of the function: 

𝑓(𝑥) = |𝑥|, −𝜋 ≤ 𝑥 ≤ π, 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥) 

 

Solution: 

The substitution of 𝑓(𝑥) = |𝑥| into (6.7) and (8) leads to: 

𝑎0 =
1

𝜋
∫|𝑥| 𝑑𝑥 = −

1

𝜋
∫ 𝑥 𝑑𝑥 +

1

𝜋

0

−𝜋

𝜋

−𝜋

∫ 𝑥 𝑑𝑥 = 𝜋

𝜋

0
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𝑎𝑛 = −
1

𝜋
∫ 𝑥 cos 𝑛𝑥 𝑑𝑥 +

1

𝜋
∫ 𝑥 cos 𝑛𝑥 𝑑𝑥 =

2

𝜋𝑛2
[𝑐𝑜𝑥 𝑛𝜋 − 1],      𝑛 = 1,2,3, …

𝜋

0

0

−𝜋

 

and 

𝑏𝑛 = −
1

𝜋
∫ 𝑥 sin 𝑛𝑥 𝑑𝑥 +

1

𝜋
∫ 𝑥 sin 𝑛𝑥 𝑑𝑥 = 0,      𝑛 = 1,2,3, …

𝜋

0

0

−𝜋

 

 

Since cos 𝑛𝜋 = (−1)𝑛, 𝑛 = 1,2,3, …, we can write: 

 

𝑎𝑛 =
2

𝜋𝑛2
[(−1)𝑛 − 1] = { −

4

𝜋𝑛2
,   𝑛 = 1,3,5, …

0,               𝑛 = 2,4,6, …
 

 

and thus the Fourier series becomes: 

𝑓(𝑥) =
𝜋

2
−

4

𝜋
∑

cos 𝑛𝑥

𝑛2

∞

𝑛=1
(odd)

 

By replacing the index 𝑛 with new index (2𝑛 − 1), we can also express this Fourier series in the form: 
 

𝑓(𝑥) =
𝜋

2
−

4

𝜋
∑

cos(2𝑛 − 1)𝑥

(2𝑛 − 1)2

∞

𝑛=1

 

 

 

Example 6.2: Find the Fourier series of the periodic function 𝑓 that is defined by: 
 

𝑓(𝑥) = {
0, −𝜋 ≤ 𝑥 < 0
𝑥,          0 ≤ 𝑥 < 𝜋,

        𝑓(𝑥 + 2𝜋) = 𝑓(𝑥). 

Solution: 

The Fourier coefficients are given by: 

𝑎0 =
1

𝜋
∫ 𝑓(𝑥) 𝑑𝑥 =

1

𝜋
∫ 𝑥 𝑑𝑥 =

𝜋

2

𝜋

0

𝜋

−𝜋

 

 

𝑎𝑛 =
1

𝜋
∫ 𝑥 cos 𝑛𝑥 𝑑𝑥 = {−

2

𝜋𝑛2
,   𝑛 = 1, 3, 5, …

0,           𝑛 = 2, 4, 6, …

𝜋

0

 

and 

𝑏𝑛 =
1

𝜋
∫ 𝑥 sin 𝑛𝑥 𝑑𝑥 =

(−1)𝑛−1

𝑛
,      𝑛 = 1, 2, 3, …

𝜋

0

 

Substituting these results into the into the series (6.9), we obtain: 
 

𝑓(𝑥) =
𝜋

4
−

2

𝜋
(cos 𝑥 +

cos 3𝑥

32
+

cos 5𝑥

52
+ ⋯ ) + (sin 𝑥 −

sin 2𝑥

2
+

sin 3𝑥

3
− . . .) 

or 

𝑓(𝑥) =
𝜋

4
− ∑ [

2

𝜋
∗

cos(2𝑛 − 1)

(2𝑛 − 1)2
+

(−1)𝑛

𝑛
sin 𝑛𝑥]

∞

𝑛=1

 

 


